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Motivation

Perturbative Algebraic Quantum Field Theory (pAQFT) provides a
framework for (perturbative) calculations – without Hilbert spaces. Idea:
(Generalized) Haag-Kastler axioms for a perturbative setting (formal
power series). Representations (on a Hilbert space) come at a later stage
via a GNS construction for a suitable state on a suitable algebra.

This is important for QFT calculations in other settings than on flat
(semi-)Riemannian vector spaces, e.g. a globally hyperbolic manifold M,
where we have in general neither a distinguished vacuum state at hand,
nor, by the way, a Wick rotation and related Euclidean theory.

Some tools from microlocal analysis, some from deformation quantization,
some from homological algebra (BV formalism, for gauge theory).

[Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen

09, . . . Hollands 08, Fredenhagen-Rejzner 11, . . .]. Based on [Radzikowski 96,

Kay-Wald 91, Dimock 92 . . .]. Met with [Hollands-Wald 01, . . .]
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Motivation ctd.

Until recently, the framework was not put to a test in constructible
theories. First example: Convergence of the S matrix of the sine Gordon
model [DB+Kasia Rejzner, CMP 2017].

Today, I will explain this result in detail and comment on a certain
technical assumption (on an adiabatic cutoff function that cuts off the
interaction in a particular manner).

I will also comment on joint work with Klaus Fredenhagen and Kasia
Rejzner, arXiv:17xx.xxxxx, where we can give up this restriction – and will
hint at how to construct the Haag-Kastler net of local observables.

Important not least because this makes a direct comparison of a Euclidean
and a Minkowski theory feasible!
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The ingredients
Main ingredient in pAQFT are certain distributions: the advanced and
retarded fundamental solutions, EA and ER , respectively, of a linear
(hyperbolic) PDE Pf = 0 on some spacetime M (the “free equation”),
e.g. the wave operator P = −� or the Klein-Gordon operator
P = −� + V , V ∈ C∞(M) smooth.

On a globally hyperbolic manifold M, EA and ER exist as maps
C∞c (M)→ C∞(M) and are uniquely characterized by their support
properties [Duistermaat-Hörmander, ... ],

P ◦ EA/R = EA/R ◦ P = id suppEA/R f ⊂ J∓(suppf )

EA and ER and a so-called 2-point function W (more below) are used to
define star products on certain spaces of functionals F...(M) on the
theory’s configuration space E(M).

In our case (sine Gordon), the free theory is given by P = −� on M = R2,
the 2-dimensional Minkowski space (“massless scalar field”), and
E(M) = C∞(M,R).
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Star products – starting point
One of the arts in pAQFT is to determine suitable spaces F...(M) of (i.g.
nonlinear) functionals on E(M) on which certain star products are defined
and then to possibly complete/extend to larger algebras containing
physically relevant observables.

We start from functionals on E(M) = C∞(M,R) whose functional
derivatives are compactly supported distributions, i.e. for any ϕ ∈ E(M),
we have F (k)(ϕ) ∈ E ′(Mk) for any k ∈ N.

Quantization of the free theory as a deformation quantization (with formal
paramter ~) of Peierl’s bracket which for the free theory is a map
Fµc(M)×Fµc(M)→ Fµc(M),

{F ,G} =
〈
F (1),∆G (1)

〉
,

where ∆ = ER − EA (“causal propagator”). The microcausal functionals
Fµc(M) are characterized by a condition on their functional derivatives’
wavefront set (microlocal methods).

Note: WF characterizes the
singularities of a distribution.
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Formal power series II
S-matrix encodes “the physics” of a model with interaction, written
usually in terms of Dyson’s series – formalized in pAQFT. Building block
are time ordered products.

Ignoring all singularities actually present in
QFT, consider for now only regular functionals (i.e. F (k)(ϕ) smooth). Let
∆D denote the uniquely determined Dirac propagator ∆D = 1

2(ER + EA).

Def: Time-ordering operator T

(T F )(ϕ)
.

=
∞∑
n=0

~n

n!

〈
F (2n)(ϕ), (i∆D)⊗n

〉
Def: Time-ordered product

F ·T G
.

= T (T −1F · T −1G )

Def: Introduce a second formal parameter λ and define formal S-matrix
(for an interaction F )

S(λF )
.

= T
(
e iT

−1(λF )/~
)

=
∞∑
n=0

(
iλ

~

)n 1

n!
F ·T n
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The Feynman propagator and normal ordering
Physics: Where’s the Feynman propagator? Answer: Interaction is
something that needs normal ordering (to make sense). This leads to a
Feynman propagator (another fundamental solution) EF entering into the
formal S-matrix. Contrary to ER and EA, it is not uniquely determined,
there is no canonical choice in a generic spacetime.

In fact,

EF =
i

2
(ER + EA) + H

where H is some symmetric bisolution of P such that the “2-point
function” (distribution)

W =
i

2
(ER − EA) + H

satisfies certain properties (positivity, wavefront set condition, ...).

Existence of left hand side W : by abstract arguments [Fulling - Narcowich
- Wald 81, ...] related to the fact that actually, W is the 2-point function
of a Hadamard state (on the CCR algebra built from ∆ = ER − EA).
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Remarks

Feynman propagator

EF =
i

2
(ER + EA) + H

The difference of two different choices of H is smooth.

H is symmetric, so the ? product modfied by adding H, is still a
quantization of Peierl’s bracket. Different choices of H correspond to
different choices of normal ordering, and the corresponding star products
are equivalent (in the sense of formal power series) with an explicit formal
map

αH−H′ : Fµc [[~]]→ Fµc [[~]], αH−H′(F ) =
∑ ~n

2n n!

〈
(H − H ′)⊗n,F (2n)

〉
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Formal S-matrix

The formula for the formal S-matrix then is (for a regular interaction
V ∈ Freg , normally ordered w.r.t. H, :V :H= α−1H (V ))

S(λ :V :H) = α−1H

∞∑
n=0

1
n!(

iλ
~ )n T H

n (V⊗n)

where
T H
n

.
= αH ◦ Tn ◦ (α−1H )⊗n = e~

∑
1≤i<j≤n D

ij
F ,

where e~... is understood as a formal power series, where Tn abbreviates
taking the n-fold time ordered product, where for a (regular) functional G ,

DF (G )
.

= 〈∆F ,G
(2)〉

with “the” Feynman propagator ∆F , and where the superscript i , j
denotes on which of the n copies of V the functional derivatives act.
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Expectation values
From the general setup of pAQFT [e.g. Fredenhagen-Rejzner 15]:

A Gaussian state with covariance H on a certain algebra is defined by
evaluation of αH(A) in a configuration ϕ ∈ E ,

ωϕ,H(A)
.

= αH(A)(ϕ)

The choice ϕ = 0 is distinguished by the fact (which actually motivates
the above definition) that ω0,H is exactly the expectation value in the
state whose 2-point function is given by W = i

2∆ + H.

For the S-matrix we find

ω0,H(S(λ : V :H)) = αH

(
α−1H

∞∑
n=0

1
n!(

iλ
~ )n T H

n (V⊗n)

)∣∣
ϕ=0

Observe: There is no vacuum state for massless scalar fields in 2D. This is
often misinterpreted as the nonexistence of the field – but that is not
correct: choose a Hadamard state – calculate.
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Sine Gordon
Free theory: wave operator in 2-dimensional Minkowski space-time.
Interaction: V = V a,g = 1

2 (Va(g) + V−a(g)) with the (normally ordered)
Vertex operators Va(g)

: Va(g) :H = α−1H

( ∫
exp (iaΦx) g(x)dx

)
where g is an arbitrary cutoff function, and Φx denotes the evaluation
functional Φx(ϕ) = ϕ(x) for all ϕ ∈ E .

Note: Cutoff g is built-in in the framework – this makes the functional
derivatives compactly supported distributions. Observe also that there is a
parameter a ∈ R.

One of the simplest models – treated over the decades by numerous
people and schools. Our approach resembles the calculations of vacuum
expectation values as in [Fröhlich, Seiler, ... 1970ies]. But their
calculations were done in a Euclidean setting. What’s the difference? We
do not have to worry about the singularities of the vacuum, but simply
choose a Hadamard state and calculate the expactation value.
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Convergence of the S-matrix

Theorem (DB, Rejzner CMP 2017)

There is a choice of the testfunction g (cutting of the interaction), such
that the formal S-matrix αH ◦ S(λ : V a,g :H) in the sine Gordon model
with ~a2/4π < 1 converges as a functional on the configuration space.

Note that we actually prove (absolute) convergence of the series of
the expectation value of the S-matrix in a state ωϕ,H with H given by
a 2-point function W = i

2∆ + H. By the pAQFT setup this implies
the above. Existence of such states: by abstract reasoning, or cf.
Schubert’s Hamburg Diplom thesis 2013

To be precise, we prove absolute convergence in a “state” given by
the nonpositive Hadamard parametrix W̃ = i

2∆ + H̃ . By general
nonsense (shifting formal equivalences about), we can absorb the
resulting equivalence αH−H̃ into the test function, otherwise our
estimates are left undisturbed.
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Main estimate

At n-th order perturbation theory, we have to estimate expressions of the
form T H

n (V⊗ka ⊗ V⊗n−k−a ) with 0 ≤ k ≤ n.

The key feature is that the time ordered products are (by definition)
exponential sums of Feynman propagators, and that in our particular
model, where ER/A(x , y) = −1

2θ(±(x0 − y0)− |x− y|), and for our choice

H(x , y) = − 1
4π ln |(x − y)2|, the Feynman propgator is a logarithm.

Hence, everyting boils down to estimating expressions of the form∏
1≤i<j≤k

|τ2ij − ζ2ij |β
∏

1≤i≤k,k<j≤n
|τ2ij − ζ2ij |−β

∏
k<i<j≤n

|τ2ij − ζ2ij |β .

with β = ~a2/4π > 0, and with the time variable differences τij = ti − tj
and the space variable differences ζij = xi − xj .
Note that the assumption β < 1 ensures that we do not have to
renormalize: all functions are locally integrable, the singularities at
coinciding points (UV) are irrelevant (the model’s finite regime).
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Main trick

To estimate a term such as (for 0 ≤ k ≤ n)∏
1≤i<j≤k

|τ2ij − ζ2ij |β
∏

1≤i≤k,k<j≤n
|τ2ij − ζ2ij |−β

∏
k<i<j≤n

|τ2ij − ζ2ij |β .

we rewrite it as a Determinant of a Cauchy-Vandermonde Matrix. Using
Laplace, we separate these different contributions.

Technical difficulty: In the estimate of the Vandermonde-Determinant, we
have to control the support of the testfunction g in order to force a
constant to be less than 1.

Note that we only have Vandermonde Matrix contributions if k 6= n/2, i.e.
if there are more (or less) tensor powers of Va than of V−a in the
contribution T H

n (V⊗ka ⊗ V⊗n−k−a ) at hand.
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Relation to the Euclidean estimate

In [Fröhlich 1976], vacuum expectation values of the Euclidean sine
Gordon model were investigated, where there is no choice of states (just
the vacuum). In order to make the connection to this model, we also
considered the expectation value with respect to the singular vacuum, but
for the Minkowski version of the theory.

The trick here is to introduce an auxiliary mass m > 0, calculate the
expectation values and study the limit m→ 0 [Wightman 67]. We showed
that this gives a special case of our estimate, where all contributions with
k 6= n/2 vanish (in the limit m→ 0).

In this case, we only have Cauchy determinants (very similar to the
estimates in [Fröhlich 1976]) and we can get rid of the restriction on the
support of g in order to show convergence of the expectation value.
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The Derezinski-Meissner representation

In [DM 2006] the following representation space for the massless scalar
field in 2D was given:

Carrier space is H = H0 ⊗ L2(R) where H0 is the usual Fock space
for derivatives of the field. and L2(R) an auxiliary Hilbert space.

Choose a test density ψ with total integral 1. Then

πψ(φ(g)) = φc

(
g − ψ

∫
g

)
⊗ 1 + 1⊗

(∫
g

)
q − 1⊗

(∫
g∆ψ

)
p

where φc is the free field on Fock space (well defined because it is
evaluated in a test function of total integral 0) and where q and p are
standard position and momentum operators in the Schrödinger
representation.

Observe: The 2-point function of the (vector) state Ω0 ⊗ Ω ∈ H is
the 2-point function of Schubert.
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The S matrix in the Derezinski-Meissner representation
(with KF, KR, unpublished)

Take the expectation value of the S-matrix (of the sine Gordon model)
with respect to a vector state given by e iφc (f )Ω0 ⊗ ξ ∈ H where ξ has
support ⊂ [−b

2 ,
b
2 ] and f has vanishing integral. Then〈

e iφc (f )Ω0 ⊗ ξ, Tn(: Va1(g) :0 ⊗...⊗ : Van(g) :0)e iφc (f )Ω0 ⊗ ξ
〉

= 0

if
∑

aj = a
∑

sign(aj) > b.

It follows that in the estimates on the expectation values, we can get rid of
the restriction on the support of g but still have weak convergence of the
S-matrix.

Observe that such states are dense in H.
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Outlook: Constructing the net of von Neumann algebras
(with KF, KR, unpublished)

Bogoliubov’s formula

RλV (F ) = −i~ d

dµ
|µ=0

(
S(λV )−1S(λV + µF )︸ ︷︷ ︸

=SλV (g)(µF )

)
for a functional F on E .

Main input is the relative S-matrix. Its properties (as operators on H) are
currently under investigation (have: unitarity, covariance, causal
factorization property) for the interacting field (F (h) =

∫
Φxh(x)dx) and

vertex operators.

From [Fredenhagen, Rejzner 2015], this suffices to construct the local net
(there, given in terms of formal power series, which we can show to be
summable here).
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What else?

Explicit formulae relating the sine Gordon model to the massive Thirring
model.

The estimates themselves are not all that interesting...

... but floor is now open to compare with Euclidean approach, the
factorizing S-matrix, form factor programme, ...

Work in progress: Conserved currents... quantum integrability?!
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