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Mathematical approaches to QFT

There are different strategies: Depending on ones goals and taste one
proceeds from

a classical field theory on spacetime Rd (Lagrangean) and a
method of quantizing it
a vacuum functional on a (non–commutative) tensor algebra of
test functions on Rd

a suitable measure on a space of distributions on Euclidean
space Rd

E (followed by analytic continuation to Rd )
a Poincaré covariant and causal net of operator algebras on Rd

These approaches describe the same physics. But they shed different
light on the interpretation and construction of QFTs.
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Algebraic formulation of QFT

Microscopic systems require QT description:

States (ensembles): normalized vectors Φ ∈ H (Hilbert space)
Observables (instruments): selfadjoint operators A ∈ B(H) (Algebra)

Theoretical Predictions:

Expectations (mean values of raw data): 〈Φ, A Φ〉 ∈ R.
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Algebraic formulation of QFT

Measurements take place in subregions R of spacetime.

This refined information is provided by any QFT by specifying a map

Rd ⊃ R 7−→ A(R) ⊂ B(H)

subject to the condition of isotony (net)

A(R1) ⊂ A(R2) if R1 ⊂ R2 .
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Algebraic formulation of QFT

Measurements conform with symmetries and causal structure of
spacetime.

Isometries of (Rd , g): Poincaré group P↑+ = Rd o SOo(1, d−1).

Covariance:
Automorphic action of P↑+ on observables is induced by unitary
representation U of P↑+ s.t.

U(λ)A(R)U(λ)−1 = A(λR) , λ ∈ P↑+
Stability: (elementary states)
sp U � R1 ⊂ R+ and there is a U–invariant state Ω ∈ H (vacuum)
Locality (Einstein Causality):

A(R1) ⊂ A(R2)
′ if R1 ⊂ R′2 .

A′ commutant of A in B(H), R′ causal complement of R in (Rd , g).
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Algebraic formulation of QFT

Fundamental insight: given ({A(R)}R⊂Rd , U,Ω) one can extract

particle content
particle statistics, symmetries
scattering data
underlying quantum fields
short distance properties (quarks)
properties of thermal states . . .

Algebraic approach provides a convenient framework for structural
analysis. But it may seem inappropriate as a constructive tool . . .
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Monads of algebraic QFT

Ingredients required in AQFT:
suitable unitary representation U of P↑+
system of algebras {A(R)}R⊂Rd compatible with action of U

Strategy for their construction:
Specify stable particle content of theory and construct
corresponding representation U (e.g. on Fock space H)
Identify a single von Neumann algebra M ⊂ B(H) subject to
certain compatibility conditions such that it can be interpreted as
algebra of observables in a particular wedge shaped region
W ⊂ Rd (Monad).
Generate the system of algebras {A(R)}R⊂Rd from these data.
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Monads of algebraic QFT

Wedge regions: Standard wedge W = {x ∈ Rd : x1 ≥ |x0|}

W’ W

edge
space

time

Remarks:
Poincarè group P↑+ acts transitively on the set of wedges in Rd , d > 2
There exist S,S ′ ⊂ P↑+ such that

λW ⊂W , λ ∈ S and λ′W ⊂W ′ , λ′ ∈ S ′ .
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Monads of algebraic QFT

Compatibility conditions on (M, U,Ω):

U(λ)MU(λ)−1 ⊂M whenever λW ⊂W,
U(λ′)MU(λ′)−1 ⊂M′ whenever λ′W ⊂W ′

MΩ dense in H.

Terminology: (M, U,Ω) is a causal triple

Resulting observable algebras:

A(λW)
.
= U(λ)MU(λ)−1 , λ ∈ P↑+ .

Note: definition consistent.

R =
⋂

W·⊃R
W· 7−→ A(R)

.
=

⋂
W·⊃R

A(W·) .

Proposition

Given (M, U,Ω), this map defines a local and covariant net on (Rd , g).
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Monads of algebraic QFT

Problem of constructive AQFT:
Given (U,Ω), exhibit algebras M such that (M, U,Ω) is a causal triple.

Remarks:
All QFTs with given particle content arise in this way.
Internal algebraic structure of admissible algebras M is known to
be universal (hyperfinite III1 factor).

Algebraic constructions of causal triples:
Free QFT; new examples [Brunetti, Guido, Longo]

Infinity of integrable models in d = 2; proof of complete particle
interpretation [Schroer; Lechner]

First examples of non–free QFTs for any d [Grosse, Lechner]

Deformation of QFTs [Buchholz, Lechner, Summers; Dybalski,
Tanimoto]
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Deformations of dynamical systems

Input: C*–dynamical systems

C unital C*–algebra,
α : Rd → Aut C acting continuously.

Here: C ⊂ B(H) algebra of all operators transforming continuously
under the action αx(C)

.
= U(x)CU(x)−1, x ∈ Rd .

Goal: Deformation of (C, α) without changing α.

1. Rieffel deformation:
C∞ ⊂ C smooth subalgebra. Pick skew symmetric matrix Q on Rd and
define new product ×Q on C∞

C1×QC2
.
= (2π)−d

∫∫
dxdy e−ixy αQx(C1) αy (C2) .
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Deformations of dynamical systems

Elementary observation:
For given polynomial P there exists some polynomial P ′ (and vice
versa) such that

P(x , y) e−ixy = P ′(∂x , ∂y ) e−ixy .

Thus for smooth and bounded functions x , y 7−→ F (x , y) with values in
some Banach space there exist the strong limits

lim
ε↘0

∫∫
dxdy e−ixye−ε(x2+y2) F (x , y) .
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Deformations of dynamical systems

Results:
×Q defines an associative product on C∞

×Q compatible with original *–operation
(C∞,×Q) admits a C*–norm ‖ · ‖Q; completion (CQ,×Q)

α extends continuously from C∞ to (CQ,×Q)

Thus ((CQ,×Q), α) is a deformation of the dynamical system (C, α).

Remarks:
Method used for quantization of classical systems
deformations for actions of non–abelian groups are under
investigation
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Deformations of dynamical systems

2. Warped convolution:

Input: (C∞, U) and skew symmetric matrix Q

QC .
= (2π)−d

∫∫
dxdy e−ixy αQx(C) U(y) =

∫
αQp(C) dE(p) ,

CQ
.
= (2π)−d

∫∫
dxdy e−ixy U(x) αQy (C) =

∫
dE(p) αQp(C)

Meaningful definition of left/right warped convolutions.

Terminology: Convolution of C and dE , warped by the action of Q

16 / 23



Deformations of dynamical systems

Results:
Left and right warped convolutions are equal: CQ = QC.
Warped convolution is symmetric: (CQ)∗ = (C∗)Q .

Warped convolution provides a representation πQ of (C∞,×Q):

πQ(C)
.
= CQ, C ∈ C∞

In particular
πQ(C1) πQ(C2) = πQ(C1 ×Q C2) .
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Deformations of dynamical systems

Theorem
πQ extends to a faithful representation of ((CQ,×Q), α) on H.

In particular ‖CQ‖ <∞.

Gain? Warped convolution more convenient in QFT, for:
still meaningful if algebra is not stable under the action of α
(think ofM)

products C1Q1C2Q2 meaningful for Q1 6= Q2

allows study of relations resulting from properties of sp U
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Deformations of dynamical systems

Properties involving different Qs:
Covariance: V unitary and VU(x)V−1 = U(Mx). Then

VCQV−1 = (VCV−1)MQMT , C ∈ C∞ .

Spectral commutativity:

Let C, C′ ∈ C∞ be such that for all p, q ∈ sp U

αQp(C)α−Qq(C′) = α−Qq(C′)αQp(C) .

Then
CQ C′

−Q = C′
−Q CQ .

Group structure:
(CQ1)Q2 = CQ1+Q2 .
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Construction of QFTs by deformation

Application of warping procedure to causal triples (M.U,Ω):

MQ
.
= {AQ : A ∈M∩ C∞}′′

Problem: Adjust Q such that (MQ.U,Ω) is again a causal triple.

Admissible semigroup:

Q .
=

 0 κ 0
−κ 0 0
0 0 0

 , κ > 0 .

Observations:
If λ = (x ,Λ) ∈ P↑+ s.t. λW ⊂W, then ΛQΛT = Q.

If λ = (x ,Λ) ∈P↑+ s.t. λW⊂W ′, then ΛQΛT =−Q.
Q spU ⊂ W and −Q spU ⊂ W ′.
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Construction of QFTs by deformation

Theorem
Let (M, U,Ω) be a causal triple and let Q be admissible. Then
(MQ, U,Ω) is also a causal triple.

Starting from any QFT (e.g. a free theory) one arrives by warped
convolution at deformed theories for any d ≥ 2.
Resulting theories are non–isomorphic to each other in general.
Particle content of the theory does not change, but scattering data
(S–matrix) changes.
Algebras A(R) for bounded regions R are small.
(Interpretation as theories living on non–commutative Minkowski space.)
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Conclusions

Theory of operator algebras sheds new light on constructive problems
in QFT

Task: Exhibit for chosen representation U algebra(s) M such that
(M, U,Ω) is a causal triple.
Warped convolution provides further examples of such triples.
Work on other kinds of deformations in progress.

Method can be transfered to more general (curved) spacetimes

Theory of operator algebras provides mathematical tools which are
complementary to those used in other approaches to QFT. Combining
them will hopefully lead to the mathematical consolidation of QFT.
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May the CMTP florish and contribute to this important goal!
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